Computer Security Technology Center

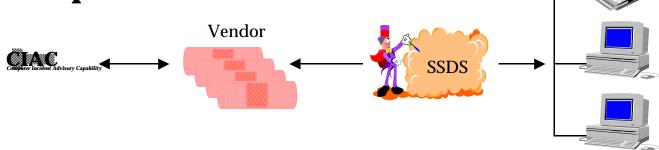
SSDS - Secure Software Distribution System

by

Tony Bartoletti

Contact: Lauri Dobbs, SSDS Project Leader, LLNL (925) 423-8590 or e-mail ssds@cheetah.llnl.gov

sponsored by


DOE Energy Research

UCRL-MI-127241

This work was performed under the auspices of the U.S. Dept. of Energy at LLNL under contract no. W-7405-Eng-48.

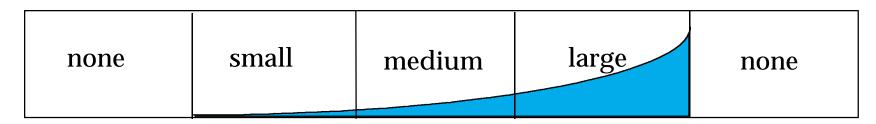
The Goal of SSDS

"To provide an automated means to rapidly evaluate, distribute, and install software security patches in a secure fashion on a large number of networked multi-vendor computers."

Results:

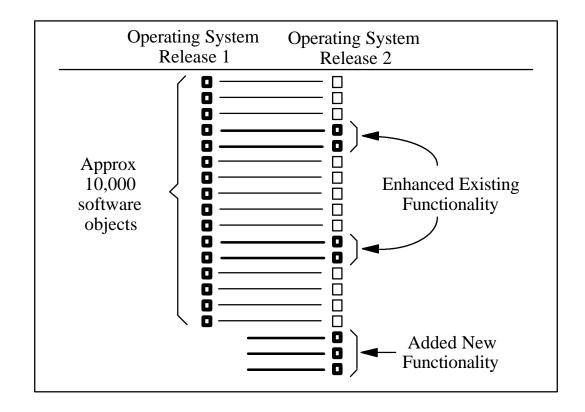
Greatly enhanced system security and integrity.

SSDS Motivation

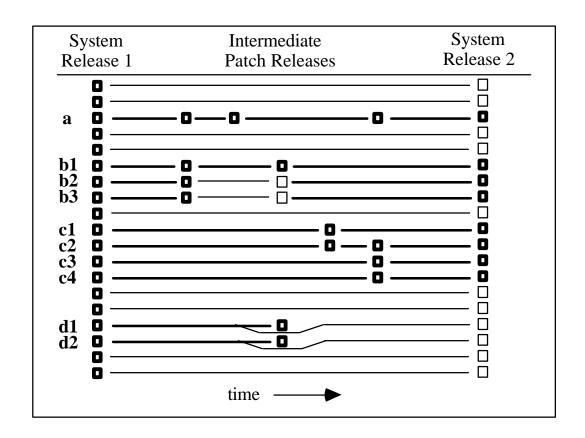

- Maintenance of computer systems is a significant portion of the cost of ownership. SSDS reduces this cost by providing transparent system administration.
- * Multi-vendor computing environments are the norm, not the exception. SSDS is vendor independent: it will work with any vendor's computing systems.
- System administration is labor intensive and requires specialized knowledge. SSDS leverages the skills and time of system administrators.
- Networked computer systems are vulnerable to viruses, trojan horses, and other malicious software. SSDS provides a comprehensive mechanism to evaluate and validate system's software of networked computers.

Software Vulnerability Timeline

TIME


Unknown Vulnerabilities Known Vulnerabilities Known Vulnerabilities Known
Vulnerabilities
with
Available
Patches

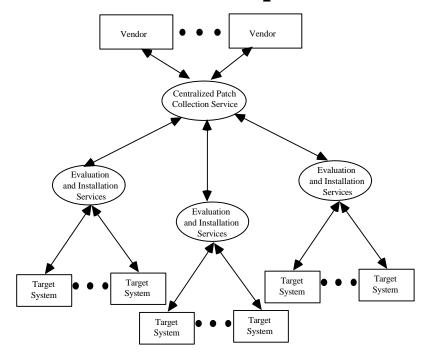
Known Vulnerabilities and Patch Applied


Risk of being exploited

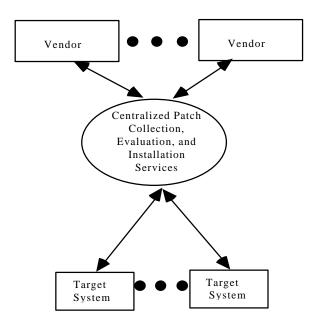
Operating System Upgrade

Hundreds of software modules added or modified

Upgrades - The Ugly Reality



Patch conflicts and contingencies abound


SSDS Architecture **Vendor Server** Patch **Patch Server Database SSDS Server** Agent (44444444) HM MARKET ME

How SSDS Works

 Many networks and hundreds of computers.

One network and few computers.

Where are we today?

- Completed a proof-of-concept prototype.
 - Detect patch deficiencies on Sun systems running Solaris 2.3 and higher.
 - Report patches needed to be installed and what is currently installed.
 - Monitor and collect Sun patches.
- Built a complete history of Sun Solaris patches.
- Distributed SSDS prototype to LLNL users for internal review.

What are we working on now?

- Broaden range of vendor systems to HP and Digital.
- * Address secure communications between networked processes.
- * Distribute needed patches to remote systems.

Future Goals

- * Automated installation of patches.
- * Ability to "back out" installed patches.
- Broaden range of vendor support to Windows NT.
- Broaden range of patch types to include:
 - Patches that require editing of configuration files.
 - Patches that replace objects in run-time libraries.
 - Kernel patches.

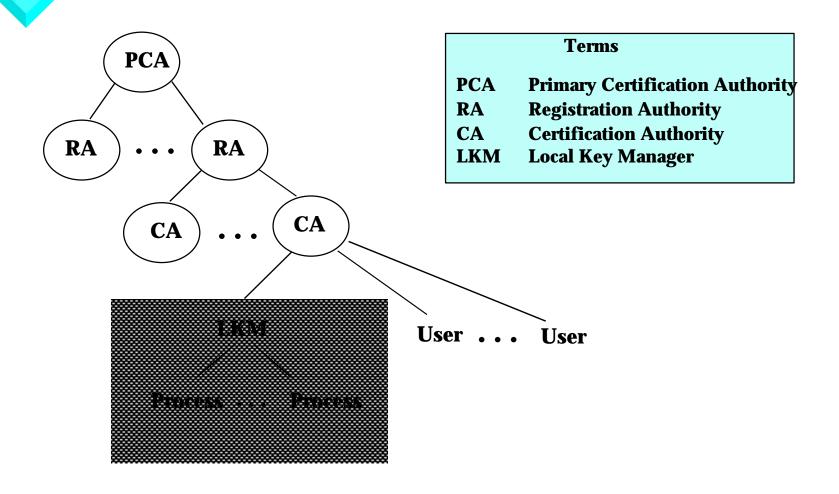
Possible Vulnerabilities

SSDS Server

integrity, authentication and confidentiality

Vendor FTP Servers

integrity and authentication


Patch Database

integrity and authentication

Need Lightweight KI for Distributed Applications

- Authentication of processes
 - SSDS Sever and SSDS Agent
- Trust relationship inherent in restricted domains
 - Minimal need for cross certification for chaining of CAs
- Local, immediate key generator (frequent recertifications)
 - Changing network configuration
 - Compromised system
- Capability to change CA (LKM)
 - New system administration

Users are "CA"s for Processes

- * We need simple policies and simple implementations for simple problems.
- We need standards for formats and processing.